skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stefánsson, Gumundur"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A star's spin–orbit angle can give us insight into a system's formation and dynamical history. In this paper, we use MAROON-X observations of the Rossiter–McLaughlin effect to measure the projected obliquity of the LP 261-75 (also known as TOI-1779) system, focusing on the fully convective M dwarf LP 261-75A and the transiting brown dwarf LP 261-75C. This is the first obliquity constraint of a brown dwarf orbiting an M dwarf and the seventh obliquity constraint of a brown dwarf overall. We measure a projected obliquity of 5 10 + 11 degrees and a true obliquity of 1 4 7 + 8 degrees for the system, meaning that the system is well aligned and that the star is rotating very nearly edge-on, with an inclination of 90° ±  11°. The system thus follows along with the trends observed in transiting brown dwarfs around hotter stars, which typically have low obliquities. The tendency for brown dwarfs to be aligned may point to some enhanced obliquity damping in brown dwarf systems, but there is also a possibility that the LP 261-75 system was simply formed aligned. In addition, we note that the brown dwarf's radius (RC =  0.9RJ) is not consistent with the youth of the system or radius trends observed in other brown dwarfs, indicating that LP 261-75C may have an unusual formation history. 
    more » « less
  2. Abstract Recent discoveries of transiting giant exoplanets around M-dwarf stars (GEMS), aided by the all-sky coverage of TESS, are starting to stretch theories of planet formation through the core-accretion scenario. Recent upper limits on their occurrence suggest that they decrease with lower stellar masses, with fewer GEMS around lower-mass stars compared to solar-type. In this paper, we discuss existing GEMS both through confirmed planets, as well as protoplanetary disk observations, and a combination of tests to reconcile these with theoretical predictions. We then introduce the Searching for GEMS survey, where we utilize multidimensional nonparameteric statistics to simulate hypothetical survey scenarios to predict the required sample size of transiting GEMS with mass measurements to robustly compare their bulk-density with canonical hot Jupiters orbiting FGK stars. Our Monte Carlo simulations predict that a robust comparison requires about 40 transiting GEMS (compared to the existing sample of ∼15) with 5σmass measurements. Furthermore, we discuss the limitations of existing occurrence estimates for GEMS and provide a brief description of our planned systematic search to improve the occurrence rate estimates for GEMS. 
    more » « less
  3. Abstract We revisit the long-studied radial velocity (RV) target HD 26965 using recent observations from the NASA-NSF “NEID” precision Doppler facility. Leveraging a suite of classical activity indicators, combined with line-by-line RV analyses, we demonstrate that the claimed 45-day signal previously identified as a planet candidate is most likely an activity-induced signal. Correlating the bulk (spectrally averaged) RV with canonical line activity indicators confirms a multiday “lag” between the observed activity indicator time series and the measured RV. When accounting for this lag, we show that much of the observed RV signal can be removed by a linear detrending of the data. Investigating activity at the line-by-line level, we find a depth-dependent correlation between individual line RVs and the bulk RVs, further indicative of periodic suppression of convective blueshift causing the observed RV variability, rather than an orbiting planet. We conclude that the combined evidence of the activity correlations and depth dependence is consistent with an RV signature dominated by a rotationally modulated activity signal at a period of ∼42 days. We hypothesize that this activity signature is due to a combination of spots and convective blueshift suppression. The tools applied in our analysis are broadly applicable to other stars and could help paint a more comprehensive picture of the manifestations of stellar activity in future Doppler RV surveys. 
    more » « less
  4. Abstract Using simultaneous multi-filter observations during the transit of an exoplanet around a K dwarf star, we determine the temperature of a starspot through modeling the radius and position with wavelength-dependent spot contrasts. We model the spot using the starspot modeling program STarSPot (STSP), which uses the transiting companion as a knife-edge probe of the stellar surface. The contrast of the spot, i.e., the ratio of the integrated flux of a darker spot region to the star's photosphere, is calculated for a range of filters and spot temperatures. We demonstrate this technique using simulated data of HAT-P-11, a K dwarf (Teff= 4780 K) with well-modeled starspot properties for which we obtained simultaneous multi-filter transits using Las Cumbres Observatory's MuSCAT3 instrument on the 2m telescope at Haleakala Observatory, which allows for simultaneous, multi-filter, diffuser-assisted high-precision photometry. We determine the average (i.e., a combination of penumbra and umbra) spot temperature for HAT-P-11's spot complexes is 4500 K ± 100 K using this technique. We also find for our set of filters that comparing the SDSS g and i filters maximizes the signal difference caused by a large spot in the transit. Thus, this technique allows for the determination of the average spot temperature using only one spot occultation in transit and can provide simultaneous information on the spot temperature and spot properties. 
    more » « less
  5. Abstract We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.80 0.15 + 0.17 g cm−3) with a planetary radius of 9.7 ± 0.5R(0.87 ± 0.04RJup) and a planetary mass of 135 18 + 17 M (0.42 0.06 + 0.05 M Jup ). It has an orbital period of 3.792622 0.000010 + 0.000010 days and an orbital eccentricity of 0.06 0.04 + 0.07 . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats. 
    more » « less
  6. null (Ed.)